

Farrah Preston BSc (Animal Science) Hons Professor Wayne Pitchford | Dr Michael Wilkes | Dr Peter McGilchrist

Dark cutting beef

- pH >5.70
- Meat colour >3
- \$8 million/annum South East South Australia
- Insufficient glycogen available at slaughter

Methodology

- Observational cohort study
- Unloading
 - Truck type, time, behaviour
- Pre-slaughter washing
 - Type (lairage, high pressure-hose, belly), number and duration of washes
- Animal behaviour
 - Unloading, lairage (after arrival, morning before slaughter), during washing

Data summary

	Number
Kill days	21
Vendors	62
Mobs	86
Mob size	43 (7 - 103)
Total animals	2,969
Wash groups	164
Wash group size	19 (2 - 49)
Dark cutting carcasses	766
Dark cutting incidence 25.5%	

Washing summary

	Mean	Min-Max	S.D.	CV	
		Total washes			
Number	6.1	2 – 13	2.0	33	
Duration (mins)	75	5 – 136	30	40	
		Lairage washes			And.
Number	P = 0.029	$6.6\pm3.0\%$	1.4	39	
Duration (mins)	P = 0.035	$-0.3 \pm 0.1\%$	29	46	
	Н	igh-pressure hose washe	S		
Number	2.0	0 - 7	1.2	74	
Duration (mins)	8.3	0 – 32	5.8	70	
		Belly washes			
Number	1.0	0 – 2	0.4	42	
Duration (mins)	0.9	0 - 10	1.3	147	8 9

Animal behaviour

- Can be measured as an outcome of animal management and environment
- Inexpensive, non-invasive measure
- Temple Grandin developed a behaviour based auditing system for

slaughter plants

Summary statistics

	Pasture	Grain	Total
Mobs	4	1	5
Animals	104	73	177
Wash groups	6	3	9

Lairage behaviours

Lairage behaviours

Group movement score	Description		
0	The majority of cattle were standing stationary and still		
1	The majority of cattle were standing stationary, but shuffling their feet, swaying or fidgeting		
2	The majority of cattle were moving around the pen in a 4 beat gait		
3	The majority of cattle were moving around the pen in a 2 beat gait		

Methodology

Washing effects on lairage behaviours

Summary of work to date

- Meat quality and behaviour indicate washing is a stressful event for cattle
- Washing affects animal behaviour, with behaviours indicative of stress increasing during washing

Australian requirements

- Australian Standard for the Hygienic Production and Transportation of Meat and Meat Products for Human Consumption (AS 4696:2007)
- Australian Standard for the Construction of Premises Processing Animals for Human Consumption (AS 4465:2001)

International requirements

- o CODEX Alimentarius Code of Hygienic Practice for Meat (2005)
- o United States of America Federal Meat Inspection Act, United States Department of Agriculture
 - Food Safety and Inspection Service
- *European Union* Corrigendum to Regulation (EC)

Australian Standard for the Hygienic Production and Transportion of Meat and Meat Products for Human Consumption (AS 4696:2007)

8.4 "Reasonable steps are taken to present animals for inspection in a **clean condition**."

8.5 "Animals that are **not clean** are not passed for slaughter or are passed for slaughter subject to conditions that ensure they do not contaminate animals, carcases and carcase parts during slaughter, dressing, post-mortem inspection and disposition."

CODEX Alimentarius - Code of Hygienic Practice for Meat (2005)

5.2 Hygiene of Slaughter Animals

21. "Animals should not be loaded for transport to the abattoir when: the **degree** of contamination of the external surfaces of the animal is likely to compromise hygienic slaughter and dressing, and suitable interventions such as **washing** or shearing are not available,"

	Positive	Not significant	Negative
Visible cleanliness	Bell 1997		
	Biss & Hathaway		
	Bryne <i>et al.</i> 2000		
	Walia <i>et al.</i> 2017		

	Positive	Not significant	Negative
Visible cleanliness	Bell 1997		
	Biss & Hathaway		
	Bryne <i>et al.</i> 2000		
	Walia <i>et al.</i> 2017		
Microbiological cleanliness		Drume et al 2000	Biss & Hathaway
	Bryne <i>et al.</i> 2000	Bryne <i>et al.</i> 2000	Mies <i>et al.</i> 2004
		Kannan <i>et al.</i> 2007	Walia <i>et al.</i> 2017

	Positive	Not significant	Negative
Visible cleanliness	Bell 1997		
	Biss & Hathaway		
	Bryne et al. 2000		
	Walia <i>et al.</i> 2017		
		During a starl 2000	Biss & Hathaway
Microbiological cleanliness	Bryne <i>et al.</i> 2000	Bryne et al. 2000	Mies <i>et al.</i> 2004
		Kannan <i>et al.</i> 2007	
			Walia <i>et al.</i> 2017

- To improve cleanliness
- Literature suggest as visual cleanliness improves, microbial cleanliness worsens
- Washing with water alone increased microbial carcass contamination

Trial aims

- To determine the most effective method for pre-slaughter hide washing, achieved by:
 - 1. Determining the effect of pre-slaughter hide washing on microbial carcass contamination
 - 2. Determining the effect of pre-slaughter hide washing on meat quality
 - 3. Determining the effect of pre-slaughter hide washing on animal behaviour and welfare

Trial outcome

• Determine an optimal method for pre-slaughter hide washing that controls or improves microbial carcass contamination, without having a negative effect on meat quality, or animal behaviour and welfare

Farrah Preston BSc (Animal Science) Hons Professor Wayne Pitchford | Dr Michael Wilkes | Dr Peter McGilchrist