Australia's export meat products – how do they rate at the Hygiene Olympics?

John Sumner, Andreas Kiermeier, Jessica Jolley

AUSTRALIAN MEAT PROCESSOR CORPORATION

We've written a monograph: *Research and development in the Australian red meat industry: its impact on food safety and shelf life*

Objectives:

- To gather, in one publication, objective evidence surrounding the hygiene status of Australian meat products
- 2. Provide the research and development which has underpinned this status
- 3. Provide material to the Dept to help them negotiate a new deal with overseas regulators

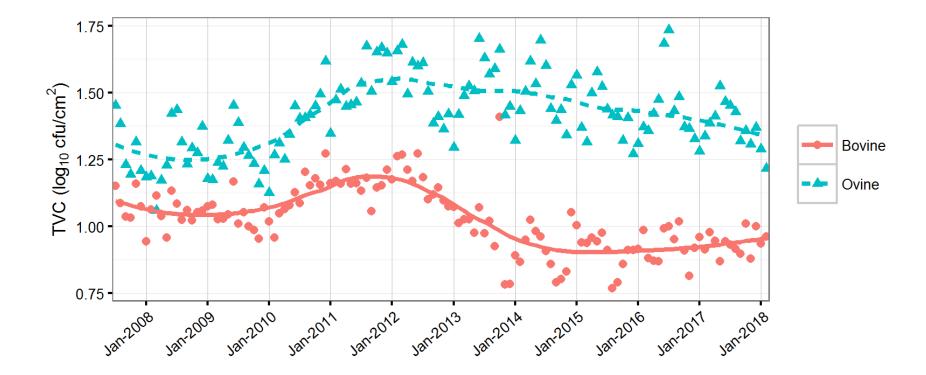
Acknowledgments

The following people read early drafts and put us right:

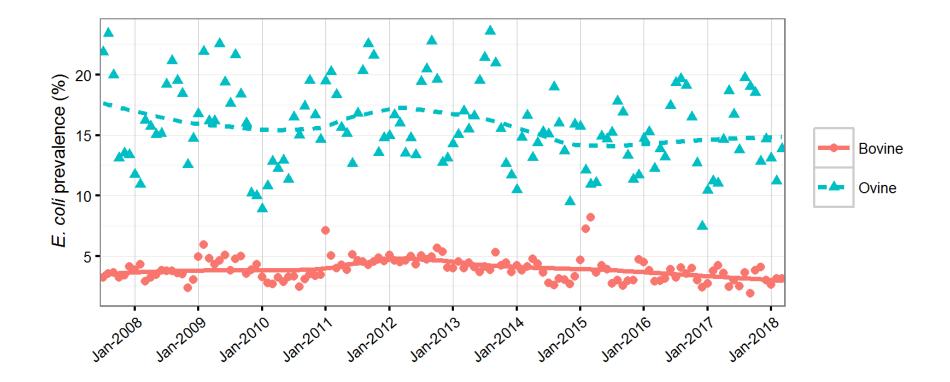
Robert Barlow, Ian Eustace, Narelle Fegan, David Jordan, Jenny Kroonstuiver, Glen Mellor, Clive Richardson and Tom Ross.

Executive summary

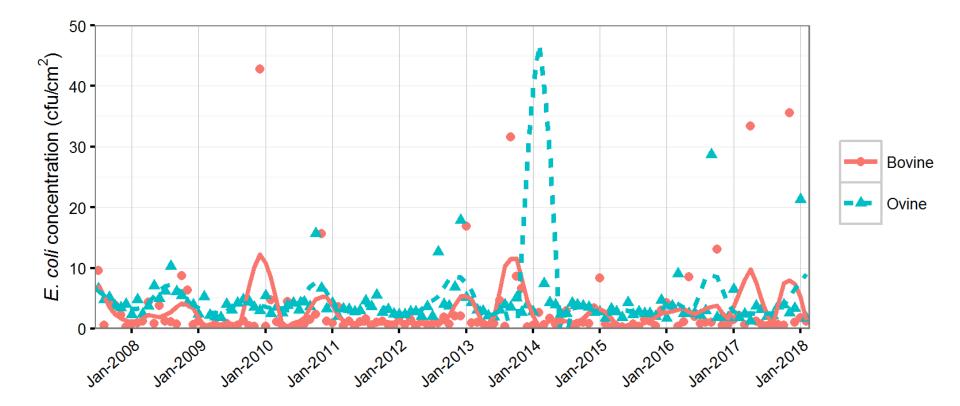
- The Australian system
- Testing and monitoring
- Carcase hygiene how does Australia compare globally?
- Final product hygiene how does Australia compare globally?
- Food safety
- Shelf life of vacuum packed cuts

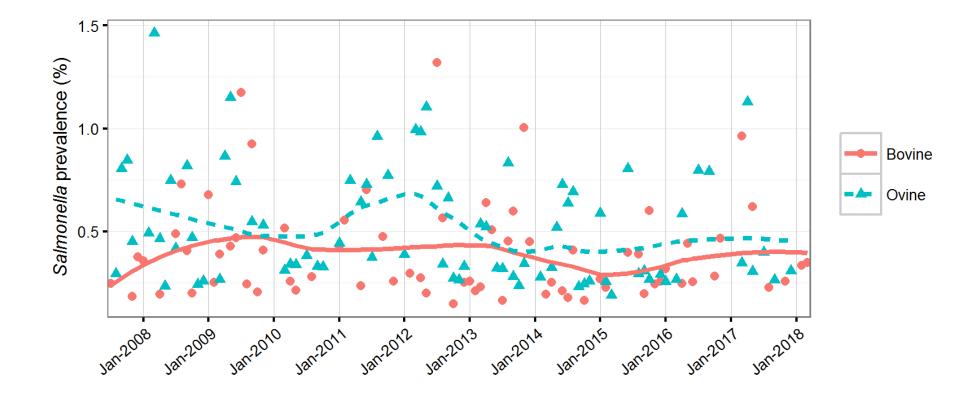

Main document

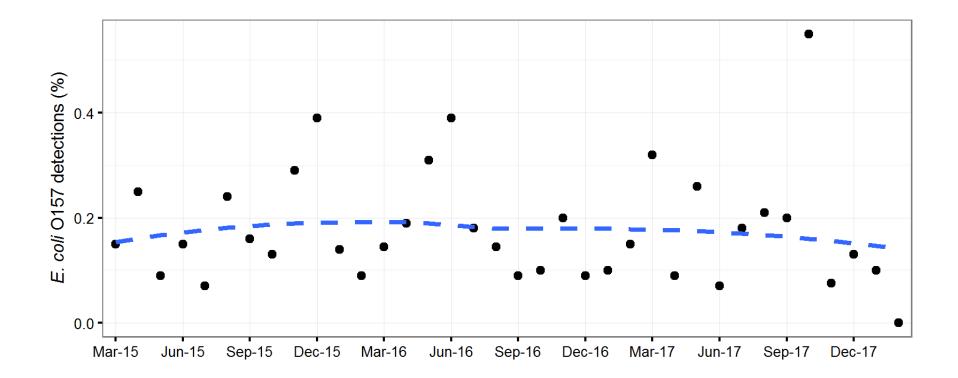
- 1. Introduction: an industry is born
- 2. Hygienic status of Australian red meat carcases
- 3. Rapid increase in microbiological knowledge of carcases
- 4. The modern Australian slaughter and dressing system
- 5. Process evaluation and improvement
- 6. Microbiological quality of Australian carcases, then and now
- 7. The National Carcase Microbiological Monitoring Program
- 8. How does Australia compare globally?
- 9. The impact of the Australian system on carcase contamination
- 10. Interventions to decontaminate the carcase
- 11. The Shiga toxin-producing E. coli (STEC) problem
- 12. Risk of illness from meat consumption
- 13. Chilled meat to distant markets flexible packing and modified gas atmospheres
- 14. Shelf life of Australian VP chilled meats
- 15. Meat regulation and quality systems
- 16. Predictive microbiology
- 17. National baseline surveys


The Australian system

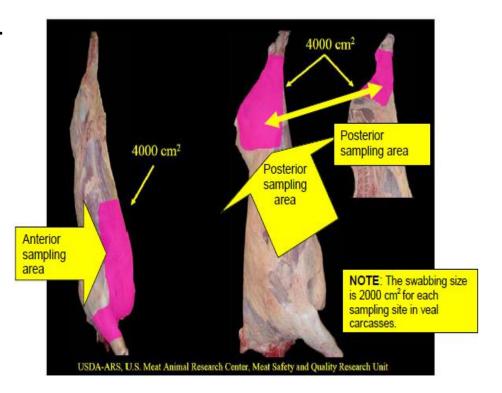
- 1. Livestock generally enter the slaughter facility in a clean condition
- 2. Slaughter and dressing chain speeds are low
- 3. Improved unit operations for hide/pelt removal
- 4. Well-trained operators and managers
- 5. Establishments trim to a standard specification
- 6. Microbiological monitoring
- 7. Technical underpinning

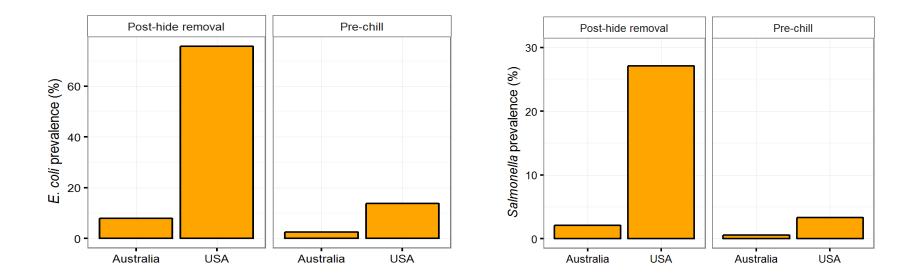

Indicators - Low total bacteria


Indicators - E. coli prevalence


Indicators – low E. coli numbers

Pathogens - Salmonella prevalence




Pathogens – O157 prevalence

Baseline survey - US comparison

- FSIS carcase baseline we duplicated it
- More than 5000 carcase samples from both industries
- Large area sampling

U.S. Department of Agriculture compared beef trim from Australia, New Zealand, Uruguay with their own domestic product.

Indicator	1 st place	2 nd place

U.S. Department of Agriculture compared beef trim from Australia, New Zealand, Uruguay with their own domestic product.

Indicator	1 st place	2 nd place
Total Count	Australia	NZ

U.S. Department of Agriculture compared beef trim from Australia, New Zealand, Uruguay with their own domestic product.

Indicator	1 st place	2 nd place
Total Count	Australia	NZ
Enterobacteriaceae	Australia	NZ

U.S. Department of Agriculture compared beef trim from Australia, New Zealand, Uruguay with their own domestic product.

Indicator	1 st place	2 nd place
Total Count	Australia	NZ
Enterobacteriaceae	Australia	NZ
Coliforms	Australia	NZ

U.S. Department of Agriculture compared beef trim from Australia, New Zealand, Uruguay with their own domestic product.

Indicator	1 st place	2 nd place
Total Count	Australia	NZ
Enterobacteriaceae	Australia	NZ
Coliforms	Australia	NZ
E. coli	NZ	Australia

U.S. Department of Agriculture compared beef trim from Australia, New Zealand, Uruguay with their own domestic product.

Indicator	1 st place	2 nd place
Total Count	Australia	NZ
Enterobacteriaceae	Australia	NZ
Coliforms	Australia	NZ
E. coli	NZ	Australia
Staph. aureus	Australia	NZ

Pathogen	1 st place	2 nd place	

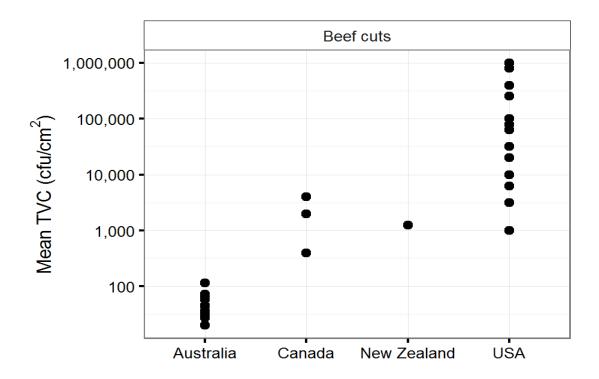
Pathogen	1 st place	2 nd place
Salmonella	Australia	NZ

Pathogen	1 st place	2 nd place
Salmonella	Australia	NZ
Campylobacter	Australia	NZ

Pathogen	1 st place	2 nd place
Salmonella	Australia	NZ
Campylobacter	Australia	NZ
Listeria monocytogenes	Australia	NZ

Pathogen	1 st place	2 nd place
Salmonella	Australia	NZ
Campylobacter	Australia	NZ
Listeria monocytogenes	Australia	NZ
HUS-related non-O157	Australia	NZ

The USA researchers stated that the results revealed significant differences between samples *"with the lowest pathogen numbers in samples from AUS"* (Bosilevac *et al.* 2007).


Set of steak knives - STECs

- If all Australian trim exported to the USA was manufactured into "Aussie" hamburgers (no comingling), they would cause less than 1 illness/decade in quick serve restaurants (Kiermeier *et al.* 2015).
- 2. ANU did a 10-year analysis of STEC illness not one illness from meat.

Set of steak knives - STECs

- 3. We have very low rates of STEC illness compared with the rest of the world.
- 4. CSIRO research with USA found Australian O157 was 'less virulent' than USA O157.
- This based on the type of toxin genes they carry, the amount of toxin they produce and location of the toxin genes in the genome (Mellor *et al.* 2013).

Beef primals at packaging Low counts = long shelf life

Beef primals at packaging Low counts = long shelf life

Beef	Mean storage (°C)	Shelf life (days)	Reference
Striploin	-0.5	189-203	Small <i>et al</i> . 2012
Striploin	-1	280	Tunnage 2018
Cube roll	-0.5	189-203	Small <i>et al</i> . 2012
Cube roll	-1	266	Tunnage 2018

Beef primals at packaging Low counts = long shelf life

Beef	Mean storage (°C)	Shelf life (days)	Reference
Striploin	-0.5	189-203	Small <i>et al</i> . 2012
Striploin	-1	280	Tunnage 2018
Cube roll	-0.5	189-203	Small <i>et al</i> . 2012
Cube roll	-1	266	Tunnage 2018

Lamb	Mean storage (°C)	Shelf life (days)	Reference
Boneless leg	0	103	MLA 2017
Bone-in leg	0	97	MLA 2017
Rack	0	94	MLA 2017